Feature based 3D Object Recognition using Artificial Neural Networks
نویسندگان
چکیده
The recognition of objects is one of the main goals for computer vision research. This paper formulates and solves the problem of three-dimensional (3D) object recognition for Polyhedral objects. A multiple view of 2D intensity images are taken from multiple cameras and used to model the 3D objects. The proposed methodology is based on extracting set of features from the 2D images which include the Affine, Zernike and Hu moments invariants to be used as inputs to train artificial neural network (ANN). Various architectures of ANN were explored to recognize a shape of Polyhedral objects. The experiments results show that 3D objects can be sufficiently modeled and recognized by set of multiple 2D views. The best ANN architecture was twenty input and single output model. References Szeliski, R. , 2010, Computer Vision: Algorithms and Applications, Springer, New York. Sharath, P. , Chitra, D. , and Anil, K. , R. , 1993, Feature Detection for 3D Object
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملThree-dimensional object representation and invariant recognition using continuous distance transform neural networks
3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural-network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network ...
متن کاملObject recognition in image sequences with cellular neural networks
In this paper, the application of CNN associative memories for 3D object recognition is presented. The main idea is to analyse the optical flow in an image sequence of an object. Several features of the optical flow between two succeeding images are calculated and merged to a time series of features for the whole image sequence. These features show several object specific characteristics and ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012